Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Sci Immunol ; 6(59)2021 05 25.
Article in English | MEDLINE | ID: covidwho-2300367

ABSTRACT

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vß21.3 T cell receptor ß chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vß21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vß21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adult , Child , Child, Preschool , Cytokines/blood , HLA-DR Antigens/immunology , Humans , Lymphocyte Activation/immunology , SARS-CoV-2/immunology
2.
Euro Surveill ; 28(15)2023 04.
Article in English | MEDLINE | ID: covidwho-2295895

ABSTRACT

BackgroundTo cope with the persistence of the COVID-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially for the primary vaccination course, and the heterologous Vaxzevria/Comirnaty regimen had shown better efficacy and immunogenicity than the homologous Comirnaty/Comirnaty regimen.AimWe wanted to determine if this benefit was retained after a third dose of an mRNA vaccine.MethodsWe combined an observational epidemiological study of SARS-CoV-2 infections among vaccinated healthcare workers at the University Hospital of Lyon, France, with a prospective cohort study to analyse immunological parameters before and after the third mRNA vaccine dose.ResultsFollowing the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens (adjusted hazard ratio (HR) = 1.88; 95% confidence interval (CI): 1.18-3.00; p = 0.008), but this was no longer the case after the third dose (adjusted HR = 0.86; 95% CI: 0.72-1.02; p = 0.082). Receptor-binding domain-specific IgG levels and serum neutralisation capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group.ConclusionThe advantage conferred by heterologous vaccination was lost after the third dose in terms of both protection and immunogenicity. Immunological measurements 1 month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.


Subject(s)
COVID-19 , Vaccines , Humans , Antibodies, Viral , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , France/epidemiology , Prospective Studies , SARS-CoV-2 , Vaccination
3.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: covidwho-2037304

ABSTRACT

Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.


Subject(s)
Autoantibodies , Influenza, Human , Interferon Type I , Pneumonia , COVID-19/complications , COVID-19/immunology , Humans , Influenza, Human/complications , Influenza, Human/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Pneumonia/complications , Pneumonia/immunology , Yellow Fever Vaccine/adverse effects
4.
Bastard, Paul, Vazquez, Sara, Liu, Jamin, Laurie, Matthew T.; Wang, Chung Yu, Gervais, Adrian, Le Voyer, Tom, Bizien, Lucy, Zamecnik, Colin, Philippot, Quentin, Rosain, Jérémie, Catherinot, Emilie, Willmore, Andrew, Mitchell, Anthea M.; Bair, Rebecca, Garçon, Pierre, Kenney, Heather, Fekkar, Arnaud, Salagianni, Maria, Poulakou, Garyphallia, Siouti, Eleni, Sahanic, Sabina, Tancevski, Ivan, Weiss, Günter, Nagl, Laurenz, Manry, Jérémy, Duvlis, Sotirija, Arroyo-Sánchez, Daniel, Paz Artal, Estela, Rubio, Luis, Perani, Cristiano, Bezzi, Michela, Sottini, Alessandra, Quaresima, Virginia, Roussel, Lucie, Vinh, Donald C.; Reyes, Luis Felipe, Garzaro, Margaux, Hatipoglu, Nevin, Boutboul, David, Tandjaoui-Lambiotte, Yacine, Borghesi, Alessandro, Aliberti, Anna, Cassaniti, Irene, Venet, Fabienne, Monneret, Guillaume, Halwani, Rabih, Sharif-Askari, Narjes Saheb, Danielson, Jeffrey, Burrel, Sonia, Morbieu, Caroline, Stepanovskyy, Yurii, Bondarenko, Anastasia, Volokha, Alla, Boyarchuk, Oksana, Gagro, Alenka, Neuville, Mathilde, Neven, Bénédicte, Keles, Sevgi, Hernu, Romain, Bal, Antonin, Novelli, Antonio, Novelli, Giuseppe, Saker, Kahina, Ailioaie, Oana, Antolí, Arnau, Jeziorski, Eric, Rocamora-Blanch, Gemma, Teixeira, Carla, Delaunay, Clarisse, Lhuillier, Marine, Le Turnier, Paul, Zhang, Yu, Mahevas, Matthieu, Pan-Hammarström, Qiang, Abolhassani, Hassan, Bompoil, Thierry, Dorgham, Karim, consortium, Covid Hge, French, Covid study group, consortium, Comet, Gorochov, Guy, Laouenan, Cédric, Rodríguez-Gallego, Carlos, Ng, Lisa F. P.; Renia, Laurent, Pujol, Aurora, Belot, Alexandre, Raffi, François, Allende, Luis M.; Martinez-Picado, Javier, Ozcelik, Tayfun, Keles, Sevgi, Imberti, Luisa, Notarangelo, Luigi D.; Troya, Jesus, Solanich, Xavier, Zhang, Shen-Ying, Puel, Anne, Wilson, Michael R.; Trouillet-Assant, Sophie, Abel, Laurent, Jouanguy, Emmanuelle, Ye, Chun Jimmie, Cobat, Aurélie, Thompson, Leslie M.; Andreakos, Evangelos, Zhang, Qian, Anderson, Mark S.; Casanova, Jean-Laurent, DeRisi, Joseph L..
Science immunology ; 2022.
Article in English | EuropePMC | ID: covidwho-1918542

ABSTRACT

Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals;however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population. Type I IFN auto-Abs are found in 20% of hypoxemic, mRNA vaccinated COVID-19 patients despite SARS-CoV-2 neutralizing antibodies. Description

6.
J Clin Virol ; 152: 105169, 2022 07.
Article in English | MEDLINE | ID: covidwho-1804471

ABSTRACT

The virus neutralization test (VNT) is the reference for the assessment of the functional ability of neutralizing antibodies (NAb) to block SARS-CoV-2 entry into cells. New competitive immunoassays measuring antibodies preventing interaction between the spike protein and its cellular receptor are proposed as surrogate VNT (sVNT). We tested three commercial sVNT (a qualitative immunochromatographic test and two quantitative immunoassays named YHLO and TECO) together with a conventional anti-spike IgG assay (bioMérieux) in comparison with an in-house plaque reduction neutralization test (PRNT50) using the original 19A strain and different variants of concern (VOC), on a panel of 306 sera from naturally-infected or vaccinated patients. The qualitative test was rapidly discarded because of poor sensitivity and specificity. Areas under the curve of YHLO and TECO assays were, respectively, 85.83 and 84.07 (p-value >0.05) using a positivity threshold of 20 for PRNT50, and 95.63 and 90.35 (p-value =0.02) using a threshold of 80. However, the performances of YHLO and bioMérieux were very close for both thresholds, demonstrating the absence of added value of sVNT compared to a conventional assay for the evaluation of the presence of NAb in seropositive subjects. In addition, the PRNT50 assay showed a reduction of NAb titers towards different VOC in comparison to the 19A strain that could not be appreciated by the commercial tests. Despite the good correlation between the anti-spike antibody titer and the titer of NAb by PRNT50, our results highlight the difficulty to distinguish true NAb among the anti-RBD antibodies with commercial user-friendly immunoassays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Neutralization Tests/methods
7.
Res Sq ; 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1766249

ABSTRACT

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.

8.
J Clin Microbiol ; 60(1): e0174621, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1637201

ABSTRACT

With the availability of vaccines, commercial assays detecting anti-severe acute respiratory syndrome coronavirus-2 antibodies (Ab) evolved toward quantitative assays directed to the spike glycoprotein or its receptor binding domain (RBD). The main objective of the present study was to compare the Ab titers obtained with quantitative commercial binding Ab assays, after one dose (convalescent individuals) or two doses (naive individuals) of vaccine, in health care workers (HCW). Antibody titers were measured in 255 sera (from 150 HCW) with five quantitative immunoassays (Abbott RBD IgG II quant, bioMérieux RBD IgG, DiaSorin Trimeric spike IgG, Siemens Healthineers RBD IgG, Wantai RBD IgG). One qualitative total antibody anti-RBD detection assay (Wantai) was used to detect previous infection before vaccination. The results are presented in binding Ab units (BAU)/mL after application, when possible, of a conversion factor provided by the manufacturers and established from a World Health Organization internal standard. There was a 100% seroconversion with all assays evaluated after two doses of vaccine. With assays allowing BAU/mL correction, Ab titers were correlated (Pearson correlation coefficient, ρ, range: 0.85-0.94). The titer differences varied by a mean of 10.6% between Siemens and bioMérieux assays to 60.9% between Abbott and DiaSorin assays. These results underline the importance of BAU conversion for the comparison of Ab titer obtained with the different quantitative assays. However, significant differences persist, notably, between kits detecting Ab against the different antigens. A true standardization of the assays would be to include the International Standard in the calibration of each assay to express the results in IU/mL.


Subject(s)
COVID-19 , Antibodies, Viral , Health Personnel , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
9.
Sci Immunol ; 6(62)2021 08 19.
Article in English | MEDLINE | ID: covidwho-1434875

ABSTRACT

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ß. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-ß do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , COVID-19/mortality , Case-Control Studies , Child , Child, Preschool , Critical Illness , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Infant, Newborn , Interferon-alpha/immunology , Middle Aged , Young Adult
10.
Eur J Immunol ; 51(12): 3239-3242, 2021 12.
Article in English | MEDLINE | ID: covidwho-1413180

ABSTRACT

Antigen-specific T-cells are essential for protective immunity against SARS-CoV-2. We set up a semi-automated whole-blood Interferon-gamma release assay (WB IGRA) to monitor the T-cell response after stimulation with SARS-CoV-2 peptide pools. We report that the WB IGRA is complementary to serological assays to assess SARS-CoV-2 immunity.


Subject(s)
COVID-19/immunology , Interferon-gamma/metabolism , Memory T Cells/immunology , SARS-CoV-2/physiology , Adult , Automation, Laboratory , Cells, Cultured , Cohort Studies , Female , Humans , Interferon-gamma Release Tests/standards , Lymphocyte Activation , Male , Middle Aged , T-Cell Antigen Receptor Specificity , Whole Body Imaging , Young Adult
12.
Clin Transl Immunology ; 10(8): e1327, 2021.
Article in English | MEDLINE | ID: covidwho-1359783

ABSTRACT

OBJECTIVES: Impairment of type I interferon (IFN-I) immunity has been reported in critically ill COVID-19 patients. This defect can be explained in a subset of patients by the presence of circulating autoantibodies (auto-Abs) against IFN-I. We set out to improve the detection and the quantification of IFN-I auto-Abs in a cohort of critically ill COVID-19 patients, in order to better evaluate the prevalence of these Abs as the pandemic progresses, and how they correlate with the clinical course of the disease. METHODS: The concentration of anti-IFN-α2 Abs was determined in the serum of 84 critically ill COVID-19 patients who were admitted to ICU in Hospices Civils de Lyon, France, using a commercially available kit (Thermo Fisher, Catalog #BMS217). RESULTS: A total of 21 of 84 (25%) critically ill COVID-19 patients had circulating anti-IFN-α2 Abs above cut-off (> 34 ng mL-1). Among them, 15 of 21 had Abs with neutralising activity against IFN-α2, that is 15 of 84 (18%) critically ill patients. In addition, we noticed an impairment of the IFN-I response in the majority of patients with neutralising anti-IFN-α2 Abs. There was no significant difference in the clinical characteristics or outcome of with or without neutralising anti-IFN-α2 auto-Abs. We detected anti-IFN-α2 auto-Abs in COVID-19 patients' sera throughout their ICU stay. Finally, we also found auto-Abs against multiple subtypes of IFN-I including IFN-ω. CONCLUSIONS: We reported that 18% of critically ill COVID-19 patients were positive for IFN-I auto-Abs, whereas all mild COVID-19 patients were negative, confirming that the presence of these antibodies is associated with a higher risk of developing a critical COVID-19 form.

13.
Emerg Microbes Infect ; 10(1): 1499-1502, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1337230

ABSTRACT

SARS-CoV-2 mutations appeared recently and can lead to conformational changes in the spike protein and probably induce modifications in antigenicity. We assessed the neutralizing capacity of antibodies to prevent cell infection, using a live virus neutralization test with different strains [19A (initial one), 20B (B.1.1.241 lineage), 20I/501Y.V1 (B.1.1.7 lineage), and 20H/501Y.V2 (B.1.351 lineage)] in serum samples collected from different populations: two-dose vaccinated COVID-19-naive healthcare workers (HCWs; Pfizer-BioNTech BNT161b2), 6-months post mild COVID-19 HCWs, and critical COVID-19 patients. No significant difference was observed between the 20B and 19A isolates for HCWs with mild COVID-19 and critical patients. However, a significant decrease in neutralization ability was found for 20I/501Y.V1 in comparison with 19A isolate for critical patients and HCWs 6-months post infection. Concerning 20H/501Y.V2, all populations had a significant reduction in neutralizing antibody titers in comparison with the 19A isolate. Interestingly, a significant difference in neutralization capacity was observed for vaccinated HCWs between the two variants but not in the convalescent groups.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Humans , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL